Friday, August 28, 2015

Airless Tires Breathe New Life into Conventional Wheels

More and more, recent innovations in the automotive industry demonstrate the importance of further refining existing products instead of constantly trying to come up with brand new ones.

Case in point: Korean-based company Hankook unveiled a successful test run of its prototype, the iFlex: an airless tire. While a non-pneumatic tire is certainly a new development, the concept is not a new one. Militaries around the world use airless tires in heavy transport vehicles. The details around Hankook's particular design show an awareness of the process of manufacturing being just as crucial as the end result itself.

The iFlex comes in three sections: an outer layer, inner layer, and central frame fitted around the hub. The outer layer is, of course, the section built to interact with the ground the most. The inner layer is a mesh network of spokes (made from organic, rice husk material), designed to absorb the impact passed through from the outer layer.  The central frame links the two together, but is also available in multiple colors; a clever built-in nod to the average car-buyer's desire for personal customization. Probably the most interesting change Hankook made is finding a way to manufacture this model in four steps, when the standard tire model takes at least eight. Reusable materials, not needing pneumatic maintenance, and a shorter process greatly contribute to the promise of the iFLex reaching the holy grail of mass production.

Although the company is a little quiet on this latest test run, the results they disclosed sound promising. The car driving with iFLex tires reached a peak of 80mph without any issues in durability, stability, hardness, slalom (ability to zigzag), and speed. You can view Hankook's promotional video for the iFlex below:


(Note: Bridgestone Americas is also working on an airless tire design).

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company (www.rotorclip.com).
   

Monday, August 10, 2015

Virtual Arcade In Utah Set To Change Immersive Gaming Forever

Utah may not be the first place that comes to mind when envisioning the latest development in virtual technology.

That may change within the year, however, if all goes as well as planned for the new company Void. The Void, or The Vision of Infinite Dimensions, boasts it has come closest than any company before in providing virtual gear that, when worn by a player, completely immerses their senses into a "holodeck" simulation game happening all around their environment. A look at this promo video proves they may not at all be exaggerating:



There are other virtual projects out there utilizing full immersion like this. Cyberith's Virtualizer and Oculus Rift harness had a recently successful Kickstarter campaign.

None of them seem to be committing as much as The Void to space expansion. The use of maze halls and props is a perfect way to lure families used to attending immersion parks similar to what bigger theme brands like Universal Studios employ.

This way, virtualism, although clearly being packaged for gamers, may also hold the promise of cross-demographic interest to Mom and Dad as well.

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company (www.rotorclip.com).

Friday, July 24, 2015

Bladeless Wind Turbines: Progress Or Quixotic?



The collapse of the Tacoma Narrows Bridge in 1940 provides a textbook example for physics students about the dangers of overestimating the force of oscillation and aeroelastic flutter.However, not everyone has taken it as a lesson in what to avoid, but rather how to capture the dangerous phenomena and put it to good use.

Vortex Bladeless, a start-up company based in Spain, has introduced a new type of wind turbine built around the idea of oscillation including a distinct feature: no blades. The bladeless turbine, invented by Daniel Yanez, generates energy not from a basic "windmill" design, but by oscillating to and fro as wind swirls around its cylindrical top. This is essentially using the principles of vorticity to harness the power of the wind, ironic in that prevention of vorticity has been the lesson most engineers have taken from the fate of the first Tacoma Bridge.

"This is a very good way to transmit energy from a fluid to a structure,” Yanez explains. Not to mention save money. The design has no excess gears or bearings needed to hold things in place, and does not come in fractured pieces that do not fit a standard storage transportation unit (unlike blades, which demand more customization for delivery the bigger each model gets). The cylinder poles in Yanez's design would also take up less space, cost half the amount of standard wind turbines to manufacture, make less noise, and crucial for the environmental lobby, be of minimal risk to birds' flight paths.

Of course there are downsides; being more lightweight taking up less area of wind to harness means less conversion energy. Wind turbines usually have a rate of 90 percent kinetic energy conversion, while Yanez believes his model will amount to somewhere around 70 percent (it also bears reminding Yanez and his partners have only built one miniature prototype right now). Also, there are those who question the idea of an oscillating pole being silent, especially at the size it will have to be in order to produce anything worth investment. “The oscillating frequencies that shake the cylinder will make noise,” says Sheila Widnall, an aeronautics and astronautics professor at MIT. “It will sound like a freight train coming through your wind farm.”

Vortex has already received about $1 million in venture capital to work with; it hopes to receive $5 million more to help build a larger version of its current prototypes. While Yanez and his compatriots agree there is a long way to go, if they have hit upon a model of wind turbine that can be improved and developed for more efficiency of space and integration into densely populated areas, they may have just invented the next generation of wind infrastructure.

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company (www.rotorclip.com). 

Friday, July 17, 2015

The Battery May Have Just Changed...and Changed All Industry With It

Ask industry experts what's really holding alternative energy back, and even Elon Musk would admit: it's the stalling out of the battery.

The lithium ion battery, although a reliable source of energy storage, has simply hit a ceiling of efficiency with how much energy output it can give versus how expensive it is to manufacture. No one has been able to make any headway in finding a way to boost the energy output while minimizing cost-efficiency.

Until now. 24M, a battery start-up that has been in stealth mode for almost five years, has now emerged publicly to present a brilliant package of innovations that will most likely change the battery industry and the entire energy sector.


While they did not change the overall chemistry properties of the lithium-ion battery, they may have done something even better: discover a process of manufacturing that builds a lithium-ion battery faster and cheaper, with more energy capacity. Dr. Yet-Ming Chiang, co-founder, chief scientist, and a lifelong MIT mind, gave an incredible interview to Quartz about the journey he took in going all the way back to the drawing board with the battery. At one point, the start-up company had thrown all its bets onto the prospects of creating a new model flow battery (a design where unlike traditional solid cells, the cathode and anode would be delivered and maintained through two storage units of liquid.) But while the flow battery model had come with cheaper materials, one the size of a nuclear reactor would be needed in order to have a prayer of competing with gas fuel.

Chiang, to his credit, recognized when to re-prioritize. He went back to the traditional lithium-ion cell models and realized something that had been overlooked; the original manufacturers of lithium batteries was Sony, and they had done so on the same machines used to create magnetic strips for the dying cassette tape. From Chiang's interview in Quartz:

The result was the first lithium-ion cell, which Sony commercialized in 1991...But Sony also had to quickly figure out how to manufacture this new kind of battery on a commercial scale. Providence stepped in: As it happened, increasingly popular compact discs were beginning to erode the market for cassette tapes, of which Sony was also a major manufacturer. The tapes were made on long manufacturing lines that coated a film with a magnetic slurry, dried it, cut it into long strips, and rolled it up. Looking around the company, Sony’s lithium-ion managers now noticed much of this equipment, and its technicians, standing idle. 
It turned out that the very same equipment could also be used for making lithium-ion batteries. These too could be made by coating a slurry on to a film, then drying and cutting it. In this case the result isn’t magnetic tape, but battery electrodes.
This equipment, and those technicians, became the backbone of the world’s first lithium-ion battery manufacturing plant, and the model for how they have been made ever since. Today, factories operating on identical principles are turning out every commercial lithium-ion battery on the planet.
 
The machines were big, and their process was slow and expensive. They were a large part of the reason batteries couldn’t compete with gasoline. It was time to correct that mistake and figure out a new way to make the battery. “We got sidetracked by a historical accident and a reluctance to switch to something that works (better),” Chiang said.

Chiang and 24M were able to remove 80 percent inactive materials, simplify the layers inside each inidividual cell (from 24 to 5) and cut the time it takes to create one cell from 22 hours to a couple minutes. The average capital needed for an entry-level battery plant is $100 million. Chaing belives these innovations in process alone can knock the price down to $10 million; a very reasonable amount for smaller start-up companies to compete with larger battery giants.

More importantly, these efficiency changes, if they really can be duplicated on a mass level, now make batteries a direct competitor with the oil and gas sector. Heavy expensive batteries have been a literal and figurative anchor holding down the 21st century ideas of electric cars, and off-the-grid housing. With the help of Chiang and 24M, the anchor has just gotten a lot smaller.

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company.


Monday, June 29, 2015

Chicago Manufacturing Hub Opens



Back in October, we posted about the Revitalize American Manufacturing and Innovation Act, a bipartisan bill that allotted $300 million in public funds to combine with private money in creating 15 manufacturing "hubs" around the country. These hubs would be responsible for research and development that could serve in retraining workers and updating the manufacturing sector with needed technology and advancements.

This previous month, the first of those hubs finally made its grand opening. The Digital Manufacturing and Design Innovative Institute (DMII) of Chicago held its opening ceremony on May 11th, with Mayor Rahm Emmanuel, Illinois Senator Dick Durbin and Governor Bruce Rauner on hand to cut the ribbon. DMDII is a 94,000 square foot space, brought to life from the ashes of Republic Windows, a factory that closed in 2008 and took 200 local jobs with it.

With the help of $70 million from the RAMI Act and $200 million in private investment, as well as resources provided by the University of Illinios, DMDII hopes to become a place where the research-heavy world of 21st century digital tech meets the infrastructure of US manufacturing. Multiple projects are slated to use DMDII as a way of finding new ways to integrate new advances in tech, like smart data or personalized software, into existing machinery and roles for employees. Here, UI's vocational program-UI Labs-can also test new methods, gadgets, and products that may move from the student mind to the factory floor much faster than before. Make no mistake, however; DMDII is not serving as an extension of a university, so much as a makerspace for multiple organizations that span different industries. The hope is that by sharing space and resources, people and firms alike can enjoy more industrial cross-pollination. Out of collaboration, successful ideas can be practically implemented faster and on a larger scale. A documented 20 projects have already been submitted and 5 have been approved for funding, with the expectation that they will not only result in success, but success that can be mimicked in other cities and environments.

DMDII will also share its hub space with City Works, a UILabs initiative that will deal specifcally with urban infrastructure renewal. City Works hopes to research and test many smart data pilots in the model of those proven successful in cities like Singapore.

The potential Chicago's "manufacturing hub" holds is promising, and put in the context of 14 other hubs not even finished yet, the 21st century is closer than ever.

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company (www.rotorclip.com).


Friday, June 12, 2015

QUALITY BECOMES JOB 1

(Excerpt from the upcoming book on Robert Slass, Founder of Rotor Clip Company, a successful US manufacturer of retaining rings)

“…Companies should be in business for the long term to compete successfully and provide jobs. To do this, constant improvement is necessary.” Turning Deming’s Points into Action, by Robert Slass, Industry Week, June 20, 1988.


The 1980’s saw the rise of Japan as an economic powerhouse and an innovator of products and services. They perfected methods of production and succeeded in manufacturing quality goods at very competitive prices. This gave Japanese companies a strong advantage in selling everything from automobiles to consumer electronics. Many industries that enjoyed sole domination of their respective markets for many years were suddenly scrambling to stay in business.

Bob watched these events with great concern. He was particularly troubled by companies that had been in business for a lifetime suddenly selling out or dissolving into bankruptcies. If Rotor Clip was to avoid a similar fate, it had to readjust to the changing manufacturing picture.

Of all the quality ideas circulating in the automotive industry at the time, Bob was most drawn to W. Edwards Deming. His view of continuous improvement and Statistical Process Control fit with Bob’s own philosophy that quality should be the number one priority in his manufacturing operation. 

Deming developed his techniques in the US in the 1920’s. But his breakthrough came when he was invited to speak to the Japanese Union of Scientists and Engineers (JUSE) to help in the reconstruction of that country after World War II. From June through August 1950, he trained hundreds of engineers, managers, and scholars in statistical process control (SPC) and concepts of quality. Deming was so well received by the Japanese that the “Japanese Economic Miracle” that soon followed owed its success in large part to Deming. To show their gratitude the Japanese industrialists instituted the “Deming Prize” for excellence in manufacturing, an honor that is still revered in Japan to this day. http://en.wikipedia.org/wiki/W._Edwards_Deming.

But Deming’s concepts were slow to catch on in the US. After the war, our factories were more concerned with filling orders than struggling to learn the quality techniques espoused by Deming. We were still sorting parts “after the fact,” not developing “in-process” checking techniques like SPC to detect and correct errors before bad parts could be made. This complacency was short lived as Japanese companies (inspired by Deming) introduced products like automobiles that were perceived by American consumers to be of higher quality than their domestic counterparts.

By the 1980’s, American manufacturing responded to the threat. Bob led the retaining ring industry in this effort by re-vamping his Quality Assurance department and adopting some of the principles outlined in Deming’s 14 points:

1     Create constancy of purpose toward improvement of product and service.

Bob continuously improved his die designs to produce parts in high volume and reduce costs. He instilled awareness in all Rotor Clip employees that quality was everyone’s concern.

Eliminate the need for massive inspection by building quality into the product in the first place.

100% inspection was replaced by automated measurement of critical characteristics like thickness and free diameter. Operators monitored production processes with mini computers to detect negative trends and stop production before bad parts could be made.

Institute a vigorous program of education and self-improvement.

Training became an ongoing effort at Rotor Clip especially cross training to ensure knowledge and best practices were shared by all.

Improve quality and productivity, and thus constantly decrease costs.

Wire material needed to coil retaining rings was brought in-house to be annealed and shaped so as to control quality and improve production. Bob also utilized technology purchasing a CNC and an EDI machine in the 1980’s along with three laser machines in the 1990’s to increase productivity while improving quality and decreasing costs.

(http://en.wikipedia.org/wiki/W._Edwards_Deming)


Bob’s efforts paid off as Rotor Clip became one of the first suppliers to receive a GM SPEAR 2 (SPEAR was an acronym for Supplier Performance and Evaluation Reporting) in 1985. Earning a “Spear 2” rating meant that your company was “self-certified”; i.e., parts were considered of high quality, bypassed inspection and went directly to the GM production line.

Other quality accolades soon followed including the Chrysler QE (Quality Excellence) award in the same year, the “Ford Q1” designation in 1986, and the GM “Mark of Excellence” in 1989.

Bob Slass had firmly established Rotor Clip’s reputation as a quality source for retaining rings that continues today with our current quality designations: ISO/TS 16949: 2009, the worldwide automotive quality standard, and  ISO/AS9100C, the aerospace quality standard.

Joe Cappello is Director of Global Marketing for Rotor Clip Company. If you would like to continue to receive excerpts from his upcoming book on Rotor Clip and American manufacturing, click here  and e-mail him your request. He'll add you to his mailing list for updates.


Monday, June 8, 2015

Rise of The MakerSpace


One interesting and almost counter-intuitive development out of the internet tech world has been a renewed interest in "maker-culture" from younger generations. Maker-culture, which has risen the past decade out of the context of online tech communities sharing key 21st century skills such as code, has come full-circle and manifested itself in real-world outreach communities in the form of shared workrooms called "Makerspaces".

Makerspaces are studio areas that provide tools and tech for different people to create unrelated projects. Usually those projects range from engineering to software, combining elements of lab, shop, chat room, and garage. The collaborative, hybrid nature of makerspaces lend themselves as ideal for programs that supplement education, as well as exposing prospective students to the world of manufacturing and its benefits as a career choice.

The concept has clearly generated interest throughout smaller communities in America. One such community in Nebraska has entered a unique public-private partnership around makerspaces in an effort to make the idea available to enthusiasts of all ages.

Together with the University of Nebraska-Lincoln-affiliated Nebraska Innovation Campus , the Cooper Foundation has provided a $200,000 grant to help facilitate the Nebraska Innovation Studio, a 16,000 foot makerspace studio designed to provide hands-on experience in all fields of manufacturing not merely for UNL students, but other vocational students in the Lincoln area as well:

"Maker spaces are a growing trend, but Nebraska Innovation Studio will be unique. No other maker space features an in-house business accelerator and the close proximity of tenant companies and research labs on Nebraska Innovation Campus.

Once complete, everyone who enters the studio will be greeted by a gallery that celebrates the creative items being made within the space. It will be named the Cooper Foundation Makers Gallery in recognition of the foundation's support for the program."

This unprecedented scale of makerspace size and resources may yield an incredibly successful avenue for the skills training sorely lacking in the US manufacturing world, as has been frequently documented these days. If more hubs like this are developed where collaboration and cross-pollination saturate young minds to develop engineering skills both traditional as well as unorthodox, we might be in better shape for the coming century than we think.

Donal Thoms-Cappello is a freelance writer for Rotor Clip Company (www.rotorclip.com).